skip to main content


Search for: All records

Creators/Authors contains: "McNamara, Allison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Arboreal locomotion is precarious and places multiple challenges upon stability. Studies have shown that captive primates respond to narrower and steeper supports by flexing limb joints and adopting a compliant gait. We tested whether these same kinematic responses are adopted by wild primates freely ranging over a variety of supports in their natural habitats. We recorded five species of platyrrhines, five species of catarrhines, and four species of strepsirrhines with modified GoPro cameras and used remote measurement to quantify substrate characteristics. Video images were imported into ImageJ to measure the angular kinematics of limb joints during quadrupedal locomotion on a variety of arboreal supports. We statistically tested for associations between joint posture and substrate characteristics, and then disentangled the influence of phylogeny and substrate on limb joint kinematics using variation partitioning and redundancy analysis. Our results partially confirm previous kinematic studies and suggest variation in support orientation, more than diameter or compliance, influences quadrupedal gait kinematics. Phylogenetic relatedness explained more variation in the data than substrate properties. This suggests primates either prospectively choose relatively ‘safe’ substrates for locomotion, or that they possess locomotor adaptations independent of limb joint kinematics per se to overcome the challenges of the precarious arboreal environment.

     
    more » « less
  2. Abstract Locomotion on the narrow and compliant supports of the arboreal environment is inherently precarious. Previous studies have identified a host of morphological and behavioral specializations in arboreal animals broadly thought to promote stability when on precarious substrates. Less well-studied is the role of the tail in maintaining balance. However, prior anatomical studies have found that arboreal taxa frequently have longer tails for their body size than their terrestrial counterparts, and prior laboratory studies of tail kinematics and the effects of tail reduction in focal taxa have broadly supported the hypothesis that the tail is functionally important for maintaining balance on narrow and mobile substrates. In this set of studies, we extend this work in two ways. First, we used a laboratory dataset on three-dimensional segmental kinematics and tail inertial properties in squirrel monkeys (Saimiri boliviensis) to investigate how tail angular momentum is modulated during steady-state locomotion on narrow supports. In the second study, we used a quantitative dataset on quadrupedal locomotion in wild platyrrhine monkeys to investigate how free-ranging arboreal animals adjust tail movements in response to substrate variation, focusing on kinematic measures validated in prior laboratory studies of tail mechanics (including the laboratory data presented). Our laboratory results show that S. boliviensis significantly increase average tail angular momentum magnitudes and amplitudes on narrow supports, and primarily regulate that momentum by adjusting the linear and angular velocity of the tail (rather than via changes in tail posture per se). We build on these findings in our second study by showing that wild platyrrhines responded to the precarity of narrow and mobile substrates by extending the tail and exaggerating tail displacements, providing ecological validity to the laboratory studies of tail mechanics presented here and elsewhere. In conclusion, our data support the hypothesis that the long and mobile tails of arboreal animals serve a biological role of enhancing stability when moving quadrupedally over narrow and mobile substrates. Tail angular momentum could be used to cancel out the angular momentum generated by other parts of the body during steady-state locomotion, thereby reducing whole-body angular momentum and promoting stability, and could also be used to mitigate the effects of destabilizing torques about the support should the animals encounter large, unexpected perturbations. Overall, these studies suggest that long and mobile tails should be considered among the fundamental suite of adaptations promoting safe and efficient arboreal locomotion. 
    more » « less
  3. Primates' near exclusive use of diagonal sequence gaits has been hypothesized to enhance stability on arboreal substrates. To assess how primate gait kinematics vary in complex arboreal environments, we filmed eight species of free-ranging primates (Ateles, Lagothrix, Alouatta, Pithecia, Callicebus, Saimiri, Saguinus, and Cebuella) at the Tiputini Biodiversity Station, Ecuador, and quantified the diameter and orientation of locomotor substrates using remote sensors (n = 858 strides). Five of the species used primarily diagonal sequence, diagonal couplet (DSDC) gaits. Callicebus frequently used lateral sequence gaits (i.e., ~50% of strides). Saguinus and Cebuella most frequently used asymmetrical gaits. We examined the effects of substrate diameter and orientation on duty factor and interlimb phasing, controlling for speed via ANCOVA. Ateles increased limb phase on inclines (p=0.04), Lagothrix had greater duty factors on inclines (p=0.002), Callicebus exhibited greater duty factors (p=0.04) and lower limb phase values on declines (p=0.001), and both Saimiri and Saguinus displayed an inverse relationship between limb phase and substrate diameter (p=0.05, p=0.03, respectively). This study confirms the ubiquity of diagonal sequence gaits in free-ranging primates and at least partially supports predicted biomechanical adjustments to promote stability including: increased duty factor on nonhorizontal substrates, increased limb phase on inclines, and decreased limb phase on declines. Other species-specific kinematic adjustments to substrate variation are likely related to body size and ecological variation but require further investigation. 
    more » « less
  4. Laboratory investigations have provided important insight into the functional underpinnings of primate locomotor performance; however, it is unclear to what extent gait patterns in the laboratory reflect those of primates moving in natural settings. We filmed quadrupedal loco-motor activity in eight platyrrhine species at the Tiputini Biodiversity Station, Ecuador, and three additional platyrrhine species at La Suerte Biological Field Station, Costa Rica, and also quantified the diameter and orientation of locomotor substrates using remote sensors (N = 1,233 strides). We compared overall arboreal quadrupedal gait kinematic patterns in free-ranging individuals to those of laboratory platyrrhine congenerics. As expected, gait kinematics of free-ranging individuals were more variable than laboratory counterparts. Within the free-ranging dataset, Ateles and Alouatta increased limb phase on inclines (p=0.04; p=0.002, respectively), Lagothrix increased duty factors on inclines (p=0.002), Cebus increased duty factors on declines (p=0.02), and both Saimiri and Saguinus displayed an inverse relationship between limb phase and substrate diameter (p=0.05; p=0.03, respectively). This study confirms the preference for diagonal sequence gaits in free-ranging primates (i.e., 87.9% of all recorded symmetrical strides) and that in both settings primates tend to adjust gait patterns to promote security through longer contact times on non-horizontal substrates and increased limb phase on inclined substrates. We show that laboratory and field investigations of primate locomotion yield consistent patterns but that field studies can capture additional aspects of gait variability and flexibility in response to the increased substrate complexity of natural environments. 
    more » « less
  5. Abstract

    Wild primates encounter complex matrices of substrates that differ in size, orientation, height, and compliance, and often move on multiple, discontinuous substrates within a single bout of locomotion. Our current understanding of primate gait is limited by artificial laboratory settings in which primate quadrupedal gait has primarily been studied. This study analyzes wildSaimiri sciureus(common squirrel monkey) gait on discontinuous substrates to capture the realistic effects of the complex arboreal habitat on walking kinematics. We collected high‐speed video footage at Tiputini Biodiversity Station, Ecuador between August and October 2017. Overall, the squirrel monkeys used more asymmetrical walking gaits than symmetrical gaits, and specifically asymmetrical lateral sequence walking gaits when moving across discontinuous substrates. When individuals used symmetrical gaits, they used diagonal sequence gaits more than lateral sequence gaits. In addition, individuals were more likely to change their footfall sequence during strides on discontinuous substrates. Squirrel monkeys increased the time lag between touchdowns both of ipsilaterally paired limbs (pair lag) and of the paired forelimbs (forelimb lag) when walking across discontinuous substrates compared to continuous substrates. Results indicate that gait flexibility and the ability to alter footfall patterns during quadrupedal walking may be critical for primates to safely move in their complex arboreal habitats. Notably, wild squirrel monkey quadrupedalism is diverse and flexible with high proportions of asymmetrical walking. Studying kinematics in the wild is critical for understanding the complexity of primate quadrupedalism.

     
    more » « less
  6. Abstract Objectives

    Primate diagonal sequence (DS) gaits are often argued to be an adaptation for moving and foraging in the fine‐branch niche; however, existing data have come predominantly from laboratory studies that are limited in taxonomic breadth and fail to account for the structural and ecological variation of natural substrates. We test the extent to which substrate diameter and orientation influence gait sequence type and limb phase in free‐ranging primates, as well as how phylogenetic relatedness might condition response patterns.

    Materials and methods

    We filmed quadrupedal locomotion in 11 platyrrhine species at field sites in Ecuador and Costa Rica and measured the diameter and orientation of locomotor substrates using remote sensors. We quantified limb phase values and classified strides by gait sequence type (N= 988 strides).

    Results

    Our results show that most of the species in our sample consistently used DS gaits, regardless of substrate diameter or orientation; however, all taxa also used asymmetrical and/or lateral sequence gaits. By incorporating phylogenetic eigenvectors into our models, we found significant differences in gait sequence patterns and limb phase values among the major platyrrhine clades, suggesting that phylogeny may be a better predictor of gait than substrate diameter or orientation.

    Discussion

    Our field data generally corroborate locomotor patterns from laboratory studies but capture additional aspects of gait variability and flexibility in response to the complexity of natural environments. Overall, our results suggest that DS gaits are not exclusively tailored to narrow or oblique substrates but are used on arboreal substrates in general.

     
    more » « less
  7. Abstract Objectives

    Laboratory studies have yielded important insights into primate locomotor mechanics. Nevertheless, laboratory studies fail to capture the range of ecological and structural variation encountered by free‐ranging primates. We present techniques for collecting kinematic data on wild primates using consumer grade high‐speed cameras and demonstrate novel methods for quantifying metric variation in arboreal substrates.

    Materials and methods

    These methods were developed and applied to our research examining platyrrhine substrate use and locomotion at the Tiputini Biodiversity Station, Ecuador. Modified GoPro cameras equipped with varifocal zoom lenses provided high‐resolution footage (1080 p.; 120 fps) suitable for digitizing gait events. We tested two methods for remotely measuring branch diameter: the parallel laser method and the distance meter photogrammetric method. A forestry‐grade laser rangefinder was used to quantify substrate angle and a force gauge was used to measure substrate compliance. We also introduce GaitKeeper, a graphical user interface for MATLAB, designed for coding quadrupedal gait.

    Results

    Parallel laser and distance meter methods provided accurate estimations of substrate diameter (percent error: 3.1–4.5%). The laser rangefinder yielded accurate estimations of substrate orientation (mean error = 2.5°). Compliance values varied tremendously among substrates but were largely explained by substrate diameter, substrate length, and distance of measurement point from trunk. On average, larger primates used relatively small substrates and traveled higher in the canopy.

    Discussion

    Ultimately, these methods will help researchers identify more precisely how primate gait kinematics respond to the complexity of arboreal habitats, furthering our understanding of the adaptive context in which primate quadrupedalism evolved.

     
    more » « less
  8. Abstract

    The grasping capabilities and gait kinematics characteristic of primates are often argued to be adaptations for safely moving on small terminal branches. The goal of this study was to identify whether Eastern gray squirrels (Sciurus carolinensis)—arboreal rodents that frequently move and forage on small branches, lack primate‐like grasping and gait patterns, and arguably represent extant analogs of a stem primate ancestor—adjust gait kinematics to narrow and nonhorizontal branches. We studied locomotor kinematics of free‐ranging and laboratory‐housed squirrels moving over various substrates. We used high‐speed video to film (a) a population of free‐ranging squirrels moving on natural substrates and (b) laboratory‐housed squirrels moving on horizontal poles. Substrates were coded as small, medium, or large relative to squirrel trunk diameter, and as inclined, declined, or horizontal. Free‐ranging squirrels used more gallops and half‐bounds on small‐ and medium‐sized substrates, and more high‐impact bounds, with reduced limb‐lead durations, on declined substrates. Laboratory squirrels moved at higher speeds than free‐ranging squirrels and responded to decreasing diameter by using more gallops and half‐bounds, lowering speed, and—controlling for speed—increasing mean duty factor, mean number of supporting limbs, and relative forelimb lead duration. Our inability to detect substantial diameter or orientation‐related gait adjustments in the wild may be due to a limited accounting of confounding influences (e.g., substrate compliance). Ultimately, studies assessing stability measures (e.g., center of mass fluctuations and peak vertical force) are required to assess whether primates' enhanced grasping and gait patterns engender performance advantages on narrow or oblique substrates.

     
    more » « less